API
SpatialDependence.assignments
— Methodassignments(x, α, adjust = :none)
Return a vector with the categories assigned by the local statistic with a significance threshold $α$.
p-values can be adjusted with the adjust
parameter using the Bonferroni correction :bonferroni
or controlling for the False Discovery Rate, :fdr
SpatialDependence.assignments
— Methodassignments(mc::AbstractMapClassification)
Get the vector of classes indices for each observation.
assignments(mc)[i]
is the index of the class to which the $i$-th observation is assigned.
SpatialDependence.bounds
— Functionbounds(mc::AbstractMapClassification)
Get the lower and upper bounds of the classes.
bounds(mc)[1][k]
is the lower bound of the $k$-class.
bounds(mc)[2][k]
is the upper bound of the $k$-class.
SpatialDependence.cardinalities
— Methodcardinalities(W::SpatialWeights)
Return a vector with the number of neighbors of each observation.
SpatialDependence.centroid
— Functioncentroid(P)
Calculate the centroid of a polygon or vector of polygons $P$.
SpatialDependence.dnearneigh
— Methoddnearneigh(A; threshold)
Build a spatial weights object from a table A that constains a points geometry column using a distance threshold
.
SpatialDependence.dnearneigh
— Methoddnearneigh(X, Y; threshold)
Build a spatial weights object from a set of coordinates using a distance threshold
.
SpatialDependence.dnearneigh
— Methoddnearneigh(P; threshold)
Build a spatial weights object from a vector of points using a distance threshold
.
SpatialDependence.geary
— Methodgeary(x, W)
Compute the Geary's c test of global spatial autocorrelation.
Optional Arguments
permutations=9999
: number of permutations for the randomization test.rng=default_rng()
: random number generator for the randomization test.
SpatialDependence.getisord
— Methodgetisord(x, W)
Compute the Getis-Ord statistic.
Optional Arguments
star=true
: compute the Gi* statistic, or the Gi if set tofalse
.permutations=9999
: number of permutations for the randomization test.rng=default_rng()
: random number generator for the randomization test.
SpatialDependence.islands
— Methodislands (W::SpatialWeights)
Return a vector with the islands in the spatial weights object.
SpatialDependence.issignificant
— Methodissignificant(x, α, adjust = :none)
Return a vector of boolean values indicating if the local statistics are significant or not at the desired threshold $α$.
p-values can be adjusted with the adjust
parameter using the Bonferroni correction :bonferroni
or controlling for the False Discovery Rate, :fdr
SpatialDependence.knearneigh
— Methodknearneigh(A; k)
Build a spatial weights object from a table A that constains a points geometry column using $k$ nearest neighbors..
SpatialDependence.knearneigh
— Methodknearneigh(X, Y; k)
Build a spatial weights object from a set of coordinates using k
nearest neighbors.
SpatialDependence.knearneigh
— Methodknearneigh(P; k)
Build a spatial weights object from a vector of points using $k$ nearest neighbors.
SpatialDependence.level
— Functionlevels(mc::AbstractMapClassification)
Get the levels of the classes.
levels(mc)[k]
is the level of the $k$-class.
SpatialDependence.localgeary
— Methodlocalgeary(x, W)
Compute the Local Geary test of spatial autocorrelation.
Optional Arguments
permutations=9999
: number of permutations for the randomization test.rng=default_rng()
: random number generator for the randomization test.corrected=true
: divide the scaling factor by $n-1$ instead of $n$.categories=:positivenegative
: assing observations to positive or negative spatial autocorrelation, or in combination with the:moran
scatterplot.
SpatialDependence.localmoran
— Methodlocalmoran(x, W)
Compute the Local Moran test of spatial autocorrelation.
Optional Arguments
permutations=9999
: number of permutations for the randomization test.rng=default_rng()
: random number generator for the randomization test.corrected=true
: divide the scaling factor by $n-1$ instead of $n$.
SpatialDependence.mapclassify
— Functionmapclassify (mcr::AbstractMapClassificator, x::Vector)
Classify observations in variable x
in classess using the criterion specified in mcr
.
SpatialDependence.maplabels
— Functionmaplabels (mcAbstractMapClassification)
Get the labels of the classification mc
.
Optional Arguments
digits=2
: number of decimal digits.sep=", "
: separator between class lower and upper bounds.counts=true
: include the total number of observations on each class.
SpatialDependence.meancenter
— Functionmeancenter(P)
Calculate the mean center of a polygon or vector of polygons $P$.
SpatialDependence.moran
— Methodmoran(x, W)
Compute the Moran's I test of global spatial autocorrelation.
Optional Arguments
permutations=9999
: number of permutations for the randomization test.rng=default_rng()
: random number generator for the randomization test.
SpatialDependence.neighbors
— Methodneighbors(W::SpatialWeights, i::Int)
Return a vector with the neighbors of $i$.
SpatialDependence.nislands
— Methodnislands (W::SpatialWeights)
Return the number of islands in the spatial weights object.
SpatialDependence.polyneigh
— Methodpolyneigh(A, criterion = :Queen)
Build a spatial weights object from table A that contains a geometry column.
Optional Arguments
criterion=:Queen
: neighbour criterion.:Queen
or:Rook
.tol=0.0
: tolerance for polygon contiguity.
SpatialDependence.polyneigh
— Methodpolyneigh(P, criterion = :Queen)
Build a spatial weights object from a vector of polygons P
.
Optional Arguments
criterion=:Queen
: neighbour criterion.:Queen
or:Rook
.tol=0.0
: tolerance for polygon contiguity.
SpatialDependence.reggeomlattice
— Methodreggeomlattice(n, m)
Create a regular geometry-lattice of $n$ rows and $m$ columns.
Optional Arguments
gtype=:polygon
: geometry. :polygon or :point.direction=:rightdown
: direction. :rightup, :rightdown, :leftdown or :leftup.
SpatialDependence.slag
— Methodslag(W, x)
Calculate the spatial lag of x
using the spatial weights W
.
SpatialDependence.wtransform!
— Methodwtransform!(W::SpatialWeights, style::Symbol)
In-place transformation of the weights using the specified $style$.
Weights transformation
style
can be one of the following:
:binary
: 1 if neighbor, 0 if not.:row
: row-standardized. Each row sum equals one.
SpatialDependence.wtransform
— Methodwtransform(W::SpatialWeights, style::Symbol)
Returns a transformed copy of the weights matrix.
SpatialDependence.wtransformation
— Methodwtransformation (W::SpatialWeights)
Return the current transformation of the spatial weights.
StatsAPI.weights
— Methodweights(W::SpatialWeights, i::Int)
Return a vector with the weights of the neighbors of $i$.
StatsBase.counts
— Methodcounts(mc::AbstractMapClassification)
Get the vector of classess sizes.
counts(mc)[k]
is the number of observations assigned to the $k$-class.